Weakly Mal’tsev Categories and Strong Relations

نویسندگان

  • ZURAB JANELIDZE
  • NELSON MARTINS-FERREIRA
چکیده

We define a strong relation in a category C to be a span which is “orthogonal” to the class of jointly epimorphic pairs of morphisms. Under the presence of finite limits, a strong relation is simply a strong monomorphism R → X × Y . We show that a category C with pullbacks and equalizers is a weakly Mal’tsev category if and only if every reflexive strong relation in C is an equivalence relation. In fact, we obtain a more general result which includes, as its another particular instance, a similar well-known characterization of Mal’tsev categories.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Closedness Properties of Internal Relations I: a Unified Approach to Mal’tsev, Unital and Subtractive Categories

We study closedness properties of internal relations in finitely complete categories, which leads to developing a unified approach to: Mal’tsev categories, in the sense of A.Carboni, J. Lambek and M.C.Pedicchio, that generalize Mal’tsev varieties of universal algebras; unital categories, in the sense of D.Bourn, that generalize pointed Jónsson-Tarski varieties; and subtractive categories, intro...

متن کامل

Relative Mal’tsev Categories

We define relative regular Mal’tsev categories and give an overview of conditions which are equivalent to the relative Mal’tsev axiom. These include conditions on relations as well as conditions on simplicial objects. We also give various examples and counterexamples.

متن کامل

Bourn-normal Monomorphisms in Regular Mal’tsev Categories

Normal monomorphisms in the sense of Bourn describe the equivalence classes of an internal equivalence relation. Although the definition is given in the fairly general setting of a category with finite limits, later investigations on this subject often focus on protomodular settings, where normality becomes a property. This paper clarifies the connections between internal equivalence relations ...

متن کامل

A NOTE ON DOUBLE CENTRAL EXTENSIONS IN EXACT MAL’TSEV CATEGORIES dedicated to Francis Borceux on the occasion of his sixtieth birthday

La caractérisation des extensions centrales doubles en termes de commutateurs de Janelidze (dans le cas des groupes) et de Gran et Rossi (dans le cas des variétés de Mal’tsev) est montrée d’être toujours valide dans le contexte des catégories exactes de Mal’tsev avec coégalisateurs. The characterisation of double central extensions in terms of commutators due to Janelidze (in the case of groups...

متن کامل

A Note on Double Central Extensions in Exact Mal’tsev Categories

The characterisation of double central extensions in terms of commutators due to Janelidze (in the case of groups), Gran and Rossi (in the case of Mal’tsev varieties) and Rodelo and Van der Linden (in the case of semi-abelian categories) is shown to be still valid in the context of exact Mal’tsev categories.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012